Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Signal Processing Image Communication ; 2023.
Article in English | EuropePMC | ID: covidwho-2306407

ABSTRACT

In the context of COVID-19 pandemic prevention and control, it is of vital significance to realize accurate face mask detection via computer vision technique. In this paper, a novel attention improved Yolo (AI-Yolo) model is proposed, which can handle existing challenges in the complicated real-world scenarios with dense distribution, small-size object detection and interference of similar occlusions In particular, a selective kernel (SK) module is set to achieve convolution domain soft attention mechanism with split, fusion and selection operations;a spatial pyramid pooling (SPP) module is applied to enhance the expression of local and global features, which enriches the receptive field information;and a feature fusion (FF) module is utilized to promote sufficient fusions of multi-scale features from each resolution branch, which adopts basic convolution operators without excessive computational complexity. In addition, the complete intersection over union (CIoU) loss function is adopted in the training stage for accurate positioning. Experiments are carried out on two challenging public face mask detection datasets, and the results demonstrate the superiority of the proposed AI-Yolo against other seven state-of-the-art object detection algorithms, which achieves the best results in terms of mean average precision and F1 score on both datasets. Furthermore, effectiveness of the meticulously designed modules in AI-Yolo is validated through extensive ablation studies. In a word, the proposed AI-Yolo is competent to accomplish face mask detection tasks under extremely complex situations with precise localization and accurate classification.

2.
Comput Biol Med ; 159: 106947, 2023 06.
Article in English | MEDLINE | ID: covidwho-2305914

ABSTRACT

In this paper, a novel deep learning-based medical imaging analysis framework is developed, which aims to deal with the insufficient feature learning caused by the imperfect property of imaging data. Named as multi-scale efficient network (MEN), the proposed method integrates different attention mechanisms to realize sufficient extraction of both detailed features and semantic information in a progressive learning manner. In particular, a fused-attention block is designed to extract fine-grained details from the input, where the squeeze-excitation (SE) attention mechanism is applied to make the model focus on potential lesion areas. A multi-scale low information loss (MSLIL)-attention block is proposed to compensate for potential global information loss and enhance the semantic correlations among features, where the efficient channel attention (ECA) mechanism is adopted. The proposed MEN is comprehensively evaluated on two COVID-19 diagnostic tasks, and the results show that as compared with some other advanced deep learning models, the proposed method is competitive in accurate COVID-19 recognition, which yields the best accuracy of 98.68% and 98.85%, respectively, and exhibits satisfactory generalization ability as well.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , COVID-19 Testing , Semantics
3.
Expert Syst Appl ; 207: 118029, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1914352

ABSTRACT

In the context of global pandemic Coronavirus disease 2019 (COVID-19) that threatens life of all human beings, it is of vital importance to achieve early detection of COVID-19 among symptomatic patients. In this paper, a computer aided diagnosis (CAD) model Cov-Net is proposed for accurate recognition of COVID-19 from chest X-ray images via machine vision techniques, which mainly concentrates on powerful and robust feature learning ability. In particular, a modified residual network with asymmetric convolution and attention mechanism embedded is selected as the backbone of feature extractor, after which skip-connected dilated convolution with varying dilation rates is applied to achieve sufficient feature fusion among high-level semantic and low-level detailed information. Experimental results on two public COVID-19 radiography databases have demonstrated the practicality of proposed Cov-Net in accurate COVID-19 recognition with accuracy of 0.9966 and 0.9901, respectively. Furthermore, within same experimental conditions, proposed Cov-Net outperforms other six state-of-the-art computer vision algorithms, which validates the superiority and competitiveness of Cov-Net in building highly discriminative features from the perspective of methodology. Hence, it is deemed that proposed Cov-Net has a good generalization ability so that it can be applied to other CAD scenarios. Consequently, one can conclude that this work has both practical value in providing reliable reference to the radiologist and theoretical significance in developing methods to build robust features with strong presentation ability.

4.
Image Vis Comput ; 117: 104341, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1531481

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a world-wide epidemic and efficient prevention and control of this disease has become the focus of global scientific communities. In this paper, a novel face mask detection framework FMD-Yolo is proposed to monitor whether people wear masks in a right way in public, which is an effective way to block the virus transmission. In particular, the feature extractor employs Im-Res2Net-101 which combines Res2Net module and deep residual network, where utilization of hierarchical convolutional structure, deformable convolution and non-local mechanisms enables thorough information extraction from the input. Afterwards, an enhanced path aggregation network En-PAN is applied for feature fusion, where high-level semantic information and low-level details are sufficiently merged so that the model robustness and generalization ability can be enhanced. Moreover, localization loss is designed and adopted in model training phase, and Matrix NMS method is used in the inference stage to improve the detection efficiency and accuracy. Benchmark evaluation is performed on two public databases with the results compared with other eight state-of-the-art detection algorithms. At IoU = 0.5 level, proposed FMD-Yolo has achieved the best precision AP50 of 92.0% and 88.4% on the two datasets, and AP75 at IoU = 0.75 has improved 5.5% and 3.9% respectively compared with the second one, which demonstrates the superiority of FMD-Yolo in face mask detection with both theoretical values and practical significance.

SELECTION OF CITATIONS
SEARCH DETAIL